AAAI

AAAI-banner-300x48

We are very pleased to announce that one paper from our group got accepted for presentation at the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17), which will be held on February 4–9 at the Hilton San Francisco, San Francisco, California, USA.

Radon– Rapid Discovery of Topological Relations Mohamed Ahmed Sherif, Kevin Dreßler, Panayiotis Smeros, and Axel-Cyrille Ngonga Ngomo

Abstract. Datasets containing geo-spatial resources are increasingly being represented according to the Linked Data principles. Several time-efficient approaches for discovering links between RDF resources have been developed over the last years. However, the time-efficient discovery of topological relations between geospatial resources has been paid little attention to. We address this research gap by presenting Radon, a novel approach for the rapid computation of topological relations between geo-spatial resources. Our approach uses a sparse tiling index in combination with minimum bounding boxes to reduce the computation time of topological relations. Our evaluation of Radon’s runtime on 45 datasets and in more than 800 experiments shows that it outperforms the state of the art by up to 3 orders of magnitude while maintaining an F-measure of 100%. Moreover, our experiments suggest that Radon scales up well when implemented in parallel.

Acknowledgments
This work is implemented in the link discovery framework LIMES and has been supported by the European Union’s H2020 research and innovation action HOBBIT (GA no. 688227) as well as the BMWI Project GEISER (project no. 01MD16014E).