DL-Learner_Logo2015_rgb-300x95

Dear all,

the Smart Data Analytics group is happy to announce DL-Learner 1.3.

DL-Learner is a framework containing algorithms for supervised machine learning in RDF and OWL. DL-Learner can use various RDF and OWL serialization formats as well as SPARQL endpoints as input, can connect to most popular OWL reasoners and is easily and flexibly configurable. It extends concepts of Inductive Logic Programming and Relational Learning to the Semantic Web in order to allow powerful data analysis.

Website: http://dl-learner.org
GitHub page: https://github.com/AKSW/DL-Learner
Download: https://github.com/AKSW/DL-Learner/releases
ChangeLog: http://dl-learner.org/development/changelog/

DL-Learner is used for data analysis tasks within other tools such as ORE and RDFUnit. Technically, it uses refinement operator based, pattern-based and evolutionary techniques for learning on structured data. For a practical example, see http://dl-learner.org/community/carcinogenesis/. It also offers a plugin for Protégé, which can give suggestions for axioms to add.

In the current release, we added a large number of new algorithms and features. For instance, DL-Learner supports terminological decision tree learning, it integrates the LEAP and EDGE systems as well as the BUNDLE probabilistic OWL reasoner. We migrated the system to Java 8, Jena 3, OWL API 4.2 and Spring 4.3. We want to point to some related efforts here:

We want to thank everyone who helped to create this release, in particular we want to thank Giuseppe Cota who visited the core developer team and significantly improved DL-Learner. We also acknowledge support by the recently SAKE project, in which DL-Learner will be applied to event analysis in manufacturing use cases, as well as Big Data Europe and HOBBIT projects.

Kind regards,

Lorenz Bühmann, Jens Lehmann, Patrick Westphal and Simon Bin