We are happy to announce that we got a paper accepted for presentation at PAKDD 2021 (Pacific-Asia Conference on Knowledge Discovery and Data Mining). PAKDD is one of the longest established and leading international conferences in the areas of data mining and knowledge discovery. It provides an international forum for researchers and industry practitioners to share their new ideas, original research results, and practical development experiences from all KDD related areas, including data mining, data warehousing, machine learning, artificial intelligence, databases, statistics, knowledge engineering, visualization, decision-making systems, and the emerging applications.
Here is the pre-print of the accepted paper with its abstract:
Loss-aware Pattern Inference: A Correction on the Wrongly Claimed Limitations of Embedding Models
By
Mojtaba Nayyeri,
Chengjin Xu,
Yadollah Yaghoobzadeh,
Sahar Vahdati,
Mirza Mohtashim Alam,
Hamed Shariat Yazdi and
Jens Lehmann.
Abstract
Embedding knowledge graphs (KGs) into a low dimensional space has become an active research domain which is broadly utilized in many of the AI-based tasks, especially link prediction. One of the crucial aspects is the extent to which a KG embedding model (KGE) is capable to model and infer various relation patterns, such as symmetry/antisymmetry, inversion, and composition. Each embedding model is highly affected in the optimization of embedding vectors by their loss function which consequently affects the inference of relational patterns. However, most existing methods failed to consider this aspect in their inference capability. In this paper, we show that disregarding loss functions results in inaccurate or even wrong interpretation from the capability of the models. We provide deep theoretical investigations of the already existing KGE models on the example of the TransE model. To the best of our knowledge, so far, this has not been comprehensively investigated. We show that by a proper selection of the loss function for training a KGE e.g., TransE, the main inference limitations are mitigated. The provided theories together with the experimental results confirm the importance of loss functions for training KGE models and their performance.