As a member of the PyKEEN community project, we are happy to announce PyKEEN 1.0 – PyKEEN is a software package to train and evaluate knowledge graph embedding models.
- Website: https://pykeen.github.io/
- GitHub: https://github.com/pykeen/pykeen
- ChangeLog: https://github.com/pykeen/pykeen/releases
The following features are currently supported by PyKEEN:
- 23 interaction models (ComplExLiteral, ComplEx, ConvE, ConvKB, DistMult, DistMultLiteral, ERMLP, ERMLPE, HolE, KG2E, NTN, ProjE, RESCAL, RGCN, RotatE, SimplE, StructuredEmbedding, TransD, TransE, TransH, TransR, TuckER, and UnstructuredModel)
- 7 loss functions (Binary Cross Entropy, Cross Entropy, Margin Ranking Loss, Mean Square Error, Self-Adversarial Negative Sampling Loss, and Softplus Loss)
- 3 regularizers (LP-norm based regularizer, Power Sum regularizer, and Combined regularizer, i.e., convex combination of regularizers)
- 2 training approaches (LCWA and sLCWA)
- 2 negative samplers (Uniform and Bernoulli)
- Hyper-parameter optimization (using Optuna)
- Early stopping
- 6 evaluation metrics (adjusted mean rank, mean rank, mean reciprocal rank, hits@k, average-precision score, and ROC-AUC score)
PyKEEN was used to extensively test existing KGE models on a wide range of configurations. You can find those results in our paper. We want to thank everyone who helped to create this release. For more updates, please view our Twitter feed and consider following us.
Greetings from the PyKEEN-Team