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Abstract. The information on the internet suffers from noise and cor-
rupt knowledge that may arise due to human and mechanical errors. To
further exacerbate this problem, an ever-increasing amount of fake news
on social media, or internet in general, has created another challenge
to drawing correct information from the web. This huge sea of data
makes it difficult for human fact checkers and journalists to assess all
the information manually. In recent years Automated Fact-Checking has
emerged as a branch of natural language processing devoted to achiev-
ing this feat. In this work, we give an overview of recent approaches,
emphasizing on the key challenges faced during the development of such
frameworks. We test existing solutions to perform claim classification on
simple-claims and introduce a new model dubbed SimpleLSTM, which
outperforms baselines by 11%, 10.2% and 18.7% on FEVER-Support,
FEVER-Reject and 3-Class datasets respectively. The data, metadata
and code are released as open-source and will be available at https://
github.com/DeFacto/SimpleLSTM.
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1 Introduction

With the increase in false-fact circulation across different social media platforms,
it has become pertinent to validate the claims and statements released online [8,
34]. The terms Fake-News and Junk-News have gained importance in the last few
years, mainly in the context of electoral activities in North America and Western
Europe. The false facts (or rumors), in the past, have led to situations like stock
price drops and large scale investments [35]. Though social media platforms are
the most common breeding grounds for fake-news, it sometimes finds its way into
the mainstream media too [15]. The constant skepticism about inflammatory
news headlines and rapid growth in the facts that are shared online led to a new
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form of journalism that validates political facts made on the web. Political fact-
checking [25] has emerged as an effort to fight against the fake news and validate
the claims and alternative facts [15] made in political discourse. Organizations
like PolitiFact1, Snopes2 and Factcheck3, for instance, employ journalists that
manually check facts and hand annotate them publicly. Though this is a good
effort towards curbing false information, the human annotators cannot compete
with the speed with which these facts are generated. The content on the internet
is increasing every day which also means an increase in the false and incorrect
facts. This makes manual validation of facts almost impossible (although its high
precision). Automated Fact-Checking (or Fact-Validation) is a (relatively) recent
effort that tries to automate the process of manual fact-checking. Many different
branches of natural language processing have emerged that try to achieve this
goal [28]. The fact-checking task involves different perspectives. For instance,
stance detection aims at detecting whether the author of a piece of text is in
favor of the given target or against it. Recent challenges like the Fake News
Challenge 20174 [13] tackle this problem. Yet another task in the fact-checking
domain is the claim classification which deals with deciding whether a given
claim is true or not based on the evidence. FEVER 20185 [31] have proved to
be important milestone in this direction. Overall these challenges have worked
as a catalyst for the automated fact-checking community, releasing new datasets
and defining strong baselines to fuel future research. In this paper we focus our
attention on the latter case (claim classification).

Fact-Checking at its core can be treated as a claim classification problem.
It is a holistic approach that extracts evidence and then uses its arguments to
make a decision regarding the claim. Given a claim and a corpus containing a
set of documents, the problem boils down to predicting the veracity of the claim.
In practice, however, searching, extracting and processing evidence is a complex
underlying task (discussed in Sect. 3). In this work we describe the automation
process and its nuances, we also propose a LSTM-based model (dubbed Sim-
pleLSTM) for claim classification phase of the pipeline.

2 Related Work

Ciampaglia et al. [5] formulate the fact-checking problem as a special case of link
prediction in knowledge graphs (DBpedia6). However, this approach is prob-
lematic as the Knowledge Graphs are often outdated and lack status-quo of
the world. Vlachos and Riedel [34] defined the problem of fact-checking as the
truthfulness of claims in the form of a binary classification problem. They pro-
vide two datasets constructed from political fact-checking websites. Their work

1 https://www.politifact.com/.
2 https://www.snopes.com/.
3 https://www.factcheck.org/.
4 http://www.fakenewschallenge.org/.
5 http://fever.ai.
6 https://wiki.dbpedia.org/.
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tries to define the problem of fact-checking as a one-to-one automation map-
ping of the human fact-checking process. Thorne et al. [28] give an overview of
fact-checking automation for natural language claims, bridging the gaps between
fact-checking and related research areas. Starting with the fact-checking in jour-
nalism, they define basic terminology and then go on drawing a parallel between
Fake news research, fact-checking, textual entailment etc. Lee et al. [16] propose
a neural-ranker-based evidence extraction method, an important part of the fact-
checking pipeline, extending the baseline method [31]. Taniguchi et al. [27] give
a three-component pipeline consisting of document retrieval, sentence selection
and recognizing textual entailment (RTE). Popat et al. [24] design an end2end
model for fake-news detection. They use pre-retrieved articles related to a single
fact and aggregate the veracity score from each article to make the final decision
about the claim. Yang et al. [37] propose a convolution neural network-based
approach for fake news detection. They combine the text in the articles with the
image cues. Recently many studies have also proposed deep learning solutions
to the fact-checking problem [6,17,24,38]. DeclarE [24] combines the evidence
extraction and claim classification in a single end2end model. Sizhen et al. [17]
select relevant Wikipedia entities using an online available tool - S-MART - and
use their model to perform both evidence selection and claim classification in a
combined fashion, reaching baseline results evidence retrieval. Conforti et al. [6]
propose an approach for fake-news detection by focusing on the stance of the
claims. They use the dataset from Fake-News-Challenge (FNC-1) to test their
model. The model yields better results than the top performers of FNC-1. Yin
and Roth [38], give a two-wing-optimization strategy and combine the last two
steps of Fact-Checking pipeline. Their model beats the baseline [29] on evidence
identification and claim verification by a good margin. Baly et al. [2] use the app-
roach of bias detection in the news media and predict the “factuality” in news
reported by the media source. They use the following variants of veracity assess-
ment: fact-checking, fake news detection, troll detection and source reliability
estimation. Popat et al. [23] add source trend and language to the credibility
assessment approach, and also provide user interpretable explanations of the
final decision.

3 Fact-Checking Pipeline: Automating the Task

Fact-checking is a relatively new research area in NLP, but is not a new task in
journalism. The problem was first discussed in the early 1920s, evolving into stan-
dard practice at many American magazines later on [36]. However, only recently
the task has spread over different communities and countries [12]. Most recent
ideas in fact-checking revolve around automation of the human (or journalist)
fact-checking process. Currently, this is broadly translated into a 3-step process
which involves (1) collecting articles about the claim, (2) selecting prospective
evidence and finally (3) performing a final judgment. Figure 1 exemplifies this in
a nutshell, delineating these three components: (1) document retrieval, (2) evi-
dence selection and (3) claim classification. The flow is detailed in the following.
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Fig. 1. The figure shows three-component fact-checking pipeline: Document Retrieval,
Evidence Selection and Claim Classification.

Document Retrieval : The first step focuses on obtaining relevant documents [2,
31]. The module selects documents from a large corpus that are related to a given
claim. The relatedness is determined by selecting a matching metric. Throne
et al. [29] use DrQA [4] for document retrieval that selects documents from
Wikipedia7 corpus based on TF-IDF. An alternative approach could be using
web search APIs [3,11,18,23] (e.g., Bing API8) for collecting related webpages
from the internet. This approach is a better approximation of the human fact-
checking process, since human fact-checkers do not restrict their research to a
single corpus (like Wikipedia).

Evidence Selection: The next step of the pipeline is to select potential evidences
from the documents or collection of sentences that we retrieved in the first step.
This component does not differentiate between a piece of evidence that refutes
the claim, from one that supports it. The main goal at this phase is to collect
sentences that could potentially be used to run inference on the veracity of the
claim.

Source Classification: This step, although not strictly necessary in order to per-
form the task, has major importance in order to weight all of the extracted
claims (proofs) according to the trustworthiness of source [7,23].

Claim Classification: In the last step, as the name suggests, the model makes
final decision on the claim by taking all the collected information into account
[24], producing scores for each evidence, and then finally making decision on
aggregation of all the scores (textual entailment on the claim by using all pieces
of evidence [29]).

3.1 Claim Classification Methods

In the following section we describe common (weak and strong baselines) methods
to perform claim classification. The methods are detailed in Sect. 4. Feature-based

7 https://www.wikipedia.org/.
8 https://azure.microsoft.com/en-us/services/cognitive-services/bing-web-search-

api/.

https://www.wikipedia.org/
https://azure.microsoft.com/en-us/services/cognitive-services/bing-web-search-api/
https://azure.microsoft.com/en-us/services/cognitive-services/bing-web-search-api/


SimpleLSTM: A Deep-Learning Approach to Simple-Claims Classification 5

(XI-FEATURE): the first (weak) baseline method relies on a standard feature
engineering flow. The extracted features are mostly based on lexical and string
similarity features, for instance [26]. The final classification is obtained through
supervised models. We used SVM, MLP and RandomForest models. Gradient
Boosting Classifier (XGBoost) Tosik et al. [32] propose a feature based model
for stance detection. The model uses a gradient boost method for classification
which combines a number of weak learners into a single learner on an iterative
basis in the form of decision trees. The feature set contains twenty features based
on various distance measures such as cosine distance and hamming distance, rela-
tive entropy between topic model probability distributions, sentiment scores of the
claim and sentence (or evidence) and etc. We use this model as one of the baselines
for the claim classification task. Textual Entailment (TE) is under the umbrella of
Argumentation Mining in NLP and is a natural language processing task to find
directional relation between texts [33]. Given a text fragment, the task is to deter-
mine if this text is a consequence of another text. The first text fragment is called
a hypothesis and the second reference text entailing text, where the entailing text
and hypothesis can be seen as the evidence and the claim, respectively. We use the
TE model implementation by AllenNLP [9] as the second baseline for the claim
classification task. The model is an implementation of the decomposable attention
model given by Parikh et al. [21].

3.2 Proposed Architecture: SimpleLSTM

We employ recent deep learning techniques for claim-classification step in the
automated fact-checking task. To this aim, we propose SimpleLSTM, a Long-
Short-Term-Memory (LSTM) based model that extracts semantic information
from claims and evidences and then combines these representations. The com-
bined layer is then fed to a fully-connected neural network, where the final deci-
sion making (classification) is done. We use stacked-LSTM layers for both, claim
and evidence. Figure 2 gives a schematic representation of SimpleLSTM.

The inputs to the model are a claim, evidence and a target label. The claim
is represented as [C1, C2, · · · , Cm] where m ranges from 10–20 words, and the
evidence is represented as [E1, E2, · · · , En] where n ranges from 100–200 words.
The claim and evidence vectors are first passed through a pre-trained embed-
ding layer to get corresponding d×m and d×n matrices for claim and evidence
respectively, where d is the size of each word embedding. The embedding matri-
ces are then fed to two parallel stacked-LSTM layers. Last LSTM outputs for
the both the LSTM stacks give feature representations for claim and evidence.
We call them claimvec and sentvec. The feature vectors are passed through a
merge function. It should be noted that both the evidence and claim share the
embedding layer which facilitates the merging of claimvec and sentvec vectors.
In practice any binary function MERGE(sentvec,claimvec) can be used to pro-
duce a merged representation. We experimented with (1) Cosine distance, (2)
Concatenation and Multiplication of sentvec and claimvec. We found element-
wise multiplication to be most effective. Finally the fully connected layer makes
the decision.
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Fig. 2. SimpleLSTM model. The inputs are claim and evidence. Both, the evidence
and the claim are fed to an embedding layer (common for both) that outputs embedding
representation for each word. These embeddings are then passed through LSTM layers.
The final output of LSTM, sentvec and claimvec, are merged and fed to the fully
connected layer.

4 Experiments

For the experiments, we used the most relevant fact-checking dataset publicity
available: FEVER [30]. In this section we give details of the experiments we per-
formed on FEVER-Simple datasets for the claim classification task. In this work,
we mainly focused on simple claims, i.e., claims which do not exceed one sentence
in length. Therefore, we extracted from FEVER only those claims which are rep-
resented by a subject-predicate-object triple. We refer to this extracted subset as
FEVER-Simple. We implemented two strong baselines to compare the perfor-
mance with our models. We further divide the claim classification task into three
tasks: FEVER-Support, FEVER-Reject and FEVER-3-Class. FEVER-Support
uses only those claims which are true and have corresponding evidences that
support them. Similarly, FEVER-Reject contains claims which are false and
have corresponding evidences. The last task uses three class classification Sup-
port, Reject and NEI (Not enough information). Table 1 gives details about the
number of instances for each dataset. For training the models, we divide the

Table 1. FEVER-Simple subsets

Dataset Label Count

FEVER-Support Support 2761

NEI 2761

FEVER-Reject Reject 2955

NEI 2955

FEVER 3-Class Support 2761

Reject 2847

NEI 2804
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datasets into the train (80%), validation (10%) and test (10%) split. The sub-
sections below describe the setup and hyper-parameters chosen for the models
and datasets.

Table 2. List of various features used in XI-FEATURE.

Feature Definition

is sub Checks if the document contains subject

is obj Checks if the document contains object

is pred Checks if the document contains predicate

dist sub obj Text follows Distance between subject and object

pred between Does predicate occur between subject and object

sub relax Checks whether subject is present in partial form

obj relax Checks whether object is present in partial form

pred relax Checks whether predicate is present in partial form

Jaccard distance Maximum Jaccard coefficient

Cosine similarity Maximum cosine similarity

Semantic similarity Similarity score of most semantically similar sentence

4.1 Baselines

XI-FEATURE. The XI-FEATURE experiments involve tuning the hyper-
parameters for all the three classifiers: MLP, RF and SVM. We used cross-
validation as sampling method with grid search for hyper-parameter optimiza-
tion9. We generate a set of eleven features that incorporate the morphological,
syntactic and semantic information of the claim and evidence pair. The features
are generated by extracting claim specific information from the evidence. We uti-
lize subject, predicate and object (spo) triples (pre-extracted from the claim) in
our datasets. A claim like “That 70s show is a sitcom” can be broken down into
a spo triple [‘That 70s Show’, ‘is a’, ‘sitcom’]. Given a spo triple for each claim, a
simple method to find similarity between claim and evidence is to find whether
subject, predicate, and object (or their synonyms) appear in the sentence. The
first eight features utilize the triples to extract morphological information from
evidence sentence. We later added semantic similarity, cosine similarity and Jac-
card similarity between the claim and evidence sentence as three features. These
features represent the similarity measure between the claim and the most similar
sentence in the evidence. Table 2 lists all the eleven features.

Pre-trained word embeddings were used to compute the similarity based
metrics using spaCy10 python library. The extracted features are trained on three
classifier models: Support Vector Machine (SVM), Random Forest (RF) and

9 GridSearchCV from scikit-learn to obtain the best hyper-parameters.
10 github.com/explosion/spaCy.

https://github.com/explosion/spaCy
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Multi-Layer Perceptron (MLP). According to our experiments, Random Forest
yields the best results with a maximum depth of 10 and entropy as splitting
criterion. For SVM penalty of 100, gamma 0.001 and rbf kernel gave the best
performance. The neural network has two hidden layers with 44 perceptrons in
each. The model provides best results with Adam optimizer and ReLU activation
function.

XGBoost. XGBoost model is trained on FeverSimple datasets and the best
hyperparameter settings for each model are selected using a grid search with
cross-validation on the training set. A max depth of 8 and 1000 estimators pro-
vide the best performance overall on the three datasets.

TE. TE represents the pre-trained textual entailment model with decomposable
attention [21] by AllenNLP [9]. We ran this on the testing data by using claim
as the hypothesis and evidence as the entailing text.

4.2 Results

Table 3 depicts the accuracy, precision, recall and F1 scores for all the models.
It can be observed that the our feature models outperform the gradient-boost
(XGBoost) [32] and TE [9]. The MLP models gives better performance than RF

Table 3. Performance comparison of different models on FEVER support, FEVER
Reject and FEVER 3-class

Dataset Classifier Accuracy Precision Recall f1 Score
XGBoost [32] 0.766 0.766 0.766 0.762

TE [9] 0.691 0.835 0.655 0.734
FEVER Support XI-FEATURE RF 0.79 0.76 0.83 0.79

XI-FEATURE SVM 0.79 0.71 0.85 0.77
XI-FEATURE MLP 0.79 0.76 0.81 0.78

SimpleLSTM 0.850 0.834 0.856 0.845
XGBoost [32] 0.74 0.738 0.736 0.73

TE [9] 0.548 0.759 0.533 0.626
FEVER Reject XI-FEATURE RF 0.73 0.73 0.81 0.76

XI-FEATURE SVM 0.642 0.73 0.78 0.75
XI-FEATURE MLP 0.74 0.69 0.78 0.73

SimpleLSTM 0.816 0.836 0.811 0.824
XGBoost [32] 0.535 0.54 0.534 0.539

TE [9] 0.418 0.372 0.622 0.465
FEVER 3-class XI-FEATURE RF 0.55 0.60 0.61 0.60

XI-FEATURE SVM 0.55 0.54 0.56 0.53
XI-FEATURE MLP 0.59 0.61 0.62 0.61

SimpleLSTM 0.635 0.643 0.620 0.642
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and SVM on the FEVER-Simple datasets. The SimpleLSTM model beats all
the baselines with significant margin.

We found that out of cosine distance, element-wise multiplication, and plain
concatenation, element-wise multiplication works the best for SimpleLSTM, so
we decided to go with it. We chose GoogleNews vectorsGoogleNews vectors11 [19]
for pre-trained word embeddings. This is a word2vec [19] model has been trained
on Google News dataset that has about 100 billion words. It contains word
embeddings of dimension 300 for 3 million words and phrases. We fixed batch size
of 64 and Adam Optimizer, with learning rate of 0.001, for all the datasets. The
loss is binary cross-entropy loss for binary classification tasks, and categorical
cross-entropy loss for the 3-class problem. The input size for LSTM stack is 300,
and the output size is 150 for FEVER-Support and FEVER-Reject, and 100 for
3-Class.

4.3 Challenges

On the computational side, there are different fundamental challenges w.r.t. the
execution of the underlying tasks in this pipeline. We extend the definition of [14]
(items 1 and 4) by highlighting two more challenges (items 2 and 3) we argue
are crucial to bridge the gap between automated fact-checking approaches and
human fact-checkers, as follows. (1) to understand what one says [14] (NLU)
(2) to have the ability to generate equivalent arguments and counter-arguments
(NLG) (3) to have the ability to distinguish credible and non-credible informa-
tion sources (Credibility) (4) to have the ability to obtain plausible evidence [14]
(Argumentation Mining)

Firstly, algorithms need to have the ability to understand what is being said.
This refers to a specific research area called Natural Language Understanding
(NLU), which encompasses several NLP sub-tasks, such as Named Entity Recog-
nition (NER), and Part-of-speech (POS). Although significant leaps have been
made in this area, these technologies are far from human performance, especially
in more noisy contexts such as microblogs [1].

Secondly, algorithms need to process similar content accordingly, i.e., to col-
lect equivalent and related content which are potentially useful in the fact-
checking process. This is part of a branch in NLP called Natural Language
Generation (NLG) [10]. This is of utmost importance in order to have a broader
coverage when checking claims. In structured fact-checking [11], this is a crucial
step towards interpreting and transforming the input claim into natural lan-
guage. Moreover, in free text, for instance, the sentences “he was born in USA.”
and “he is a Yankee.” share the same meaning. Given a claim “he is Ameri-
can.”, algorithms should be capable to perceive that, in this context, “USA”
and “Yankee” are synonyms for “American”, thus the information extraction
phase should generate similar content automatically in order to increase recall.

Thirdly, the level of trustworthiness of authorities and sources must be
checked and taken into account. This has been studied in a topic known as

11 https://code.google.com/archive/p/word2vec/.

https://code.google.com/archive/p/word2vec/
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(Web) Credibility [7]. This step is important both in assessing the credibility
of sources isolated, as well as when confronting opposite claims made by two or
more authorities [33]. For instance, consider a scenario of researching information
about a dietary supplement that potentially helps in certain disease treatment.
One may find websites from reputable agencies (e.g., NCI USA) alongside sites
from private organizations which sell dietary supplements (which may serve as
advice hub whilst pointing to their own products). Discerning which sources are
trustworthy and which are not is a crucial step forward automated fact-checking
systems [7]. Finally, besides collecting sufficient evidence for asserting a given
claim, explicit and implicit relations among extracted arguments (as well as pos-
sible counter-arguments) should (ideally) be labeled and linked. This is studied
in another branch of NLP called Argumentation Mining [20]. The generated
graph allows achieving a richer level of metadata in order to better perform the
final fact-checking task [22].

5 Conclusion

In this work, we give an overview of the fact-checking problem and its automa-
tion in the context of natural language processing. We discuss the fact-checking
pipeline that consists of document retrieval, evidence selection, source classi-
fication, and claim classification, shedding light on existing challenges. Most
notably the claim classification phase, which consists of classification of claims
as support, reject or not related. In order to solve this task, we propose two
new models: SimpleLSTM and XI-FEATURE, comparing the results with
two strong baselines. Our experiments show that SimpleLSTM outperforms all
the baselines. Compared to the best baseline (XGBoost [32]), it outperforms it
by 11%, 10.2% and 18.7% on the FEVER-Support, FEVER-Reject and 3-Class
tasks respectively. However, we show that the task is far from being solved and
performance is only reasonable even in more simple scenarios (simple claims). As
future work, we will study the impact of such architectures in complex claims,
explore other languages and investigate further architectures to minimize the
gaps in the fact-checking automation task.

Acknowledgement. This work was partially funded by the European Union Marie
Curie ITN Cleopatra project (GA no. 812997).
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