Paper accepted at CoNLL 2018

We are very pleased to announce that our group got one paper accepted for presentation at The SIGNLL Conference on Computational Natural Language Learning (CoNLL 2018) conference. CoNLL is a top-tier conference, yearly organized by SIGNLL (ACL’s Special Interest Group on Natural Language Learning). This year, CoNLL will be colocated with EMNLP 2018 and will be held on October 31 – November 1, 2018, Brussels, Belgium.

The aim of the CoNLL conference is to bring researchers and practitioners from both academia and industry, in the areas of deep learning, natural language processing, and learning. It is among the top-10 Natural language processing and Computational linguistics conferences.

Here is the accepted paper with its abstract:

Improving Response Selection in Multi-turn Dialogue Systems by Incorporating Domain Knowledge” by Debanjan Chaudhuri, Agustinus Kristiadi, Jens Lehmann and Asja Fischer.

Abstract : Building systems that can communicate with humans is a core problem in Artificial Intelligence. This work proposes a novel neural network architecture for response selection in an end-to-end multi-turn conversational dialogue setting. The architecture applies context level attention and incorporates additional external knowledge provided by descriptions of domain-specific words. It uses a bi-directional Gated Recurrent Unit (GRU) for encoding context and responses and learns to attend over the context words given the latent response representation and vice versa. In addition, it incorporates external domain specific information using another GRU for encoding the domain keyword descriptions. This allows better representation of domain-specific keywords in responses and hence improves the overall performance. Experimental results show that our model outperforms all other state-of-the-art methods for response selection in multi-turn conversations.

This research was supported by the KDDS project at Fraunhofer.

Looking forward to seeing you at The CoNLL 2018.